Matrix Models vs. Matrix Integrals

نویسنده

  • A. Mironov
چکیده

In a brief review, we discuss interrelations between arbitrary solutions of the loop equations that describe Hermitean one-matrix model and particular (multi-cut) solutions that describe concrete matrix integrals. These latter ones enjoy a series of specific properties and, in particular, are described in terms of Seiberg-Witten-Whitham theory. The simplest example of ordinary integral is considered in detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

متن کامل

Tau Functions and Matrix Integrals

We consider solvable matrix models. We generalize Harish-Chandra-Itzykson-Zuber and certain other integrals (Gross-Witten integral and integrals over complex matrices) using the notion of tau function of matrix argument. In this case one can reduce matrix integral to the integral over eigenvalues, which in turn is certain tau function. The resulting tau functions may be analyzed either by the m...

متن کامل

Unitary Integrals and Related Matrix Models

Concise review of the basic properties of unitary matrix integrals. They are studied with the help of the three matrix models: the ordinary unitary model, Brezin-Gross-Witten model and the Harish-Charndra-Itzykson-Zuber model. Especial attention is paid to the tricky sides of the story, from De Wit-t’Hooft anomaly in unitary integrals to the problem of correlators with Itzykson-Zuber measure. O...

متن کامل

Bernoulli matrix approach for matrix differential models of first-order

The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...

متن کامل

Non-perturbative double scaling limits

Recently, the author has proposed a generalization of the matrix and vector models approach to the theory of random surfaces and polymers. The idea is to replace the simple matrix or vector (path) integrals by gauge theory or non-linear σ model (path) integrals. We explain how this solves one of the most fundamental limitation of the classic approach: we automatically obtain non-perturbative de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005